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The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based
accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong
focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corre-
sponding energy loss that affects the beam properties. An analytical model for the single particle orbits and
beam moments including the classical radiation reaction force is derived and compared to the results of a
particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron,
the resulting radiation can increase the relative energy spread of the beam to significant levels �e.g., several
percent�. This effect can be diminished by matching the beam into the channel, which could require micron
sized beam radii for typical values of the beam emittance and plasma density.
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I. INTRODUCTION

Over the last few years, plasma-based accelerator �1� re-
search has achieved major results. In particular, quasimo-
noenergetic electron beams in the 100 MeV range have been
obtained from laser wakefield accelerators �2–4�, while
plasma wakefield accelerators have demonstrated electron
energy gains in the multi-GeV range �5�. In addition to the
enormous accelerating gradients associated with the plasma
wave �wakefield�, which can be on the order of 10–
100 GV/m, the transverse focusing forces are also extremely
strong and can be on the order of the accelerating force.
Hence, the electrons that get trapped and accelerated in the
plasma focusing channel of the wakefield can undergo strong
transverse betatron oscillations. These oscillations give rise
to the emission of intense synchrotron radiation, which has
been recently studied theoretically �6� and demonstrated ex-
perimentally for both laser-driven �7,8� and beam-driven
�9,10� plasma accelerators.

Since the amount of energy that goes from the electrons
into the betatron radiation can be substantial, it may have a
significant effect on the evolution of the electron beam prop-
erties. A primary effect is a decrease of the electron beam
energy due to the emission of radiation �11,12�. This in turn
will affect the energy-dependent betatron frequency, as well
as the other beam properties, such as the energy spread and
emittance.

The synchrotron radiation process can be used to cool
electrons, as can be the case for an electron beam passing
through an undulator magnet �13�. An important parameter
characterizing the synchrotron radiation from an undulator
magnet is the undulator strength parameter au=eBu / �kumc2�,
where Bu is the amplitude of the undulator magnetic field,
�u=2� /ku is the undulator period, e is the electron charge, m
is the electron mass, and c is the speed of light in vacuum.
For example, the power radiated by a single electron in an
undulator field scales as Pu��2ku

2au
2, where � is the relativ-

istic factor of the electron. Since higher energy electrons

�higher �� radiate more than lower energy electrons, the elec-
tron energy spread will decrease as the electrons radiate in an
undulator field, which is often referred to as electron cooling
or radiative damping. Several electron cooling schemes have
been used or proposed that use a variety of methods to cause
the electrons to oscillate and radiate, such as bending
magnets �13�, crystal channels �14�, and laser fields �15–18�.

The electron beam dynamics in a plasma focusing channel
is intrinsically different from that in a conventional undulator
magnet. In an ideal undulator field, all of the electrons expe-
rience an axially periodic transverse magnetic field that is
approximately constant as a function of radius. This causes
the transverse momentum oscillations pu of the electrons to
all have approximately the same amplitude, pu=mcau, inde-
pendent of the initial radial position of the electron. This is
not the case for a plasma focusing channel, since the radial
focusing force of the wakefield is a strong function of radius
�i.e., the radial focusing force is typically linear with radius
near the axis�. Hence, the transverse motion of an electron is
a strong function of the initial radial position of that electron.
For example, in an ideal wakefield, an electron injected on
axis will travel in a straight line along the axis, whereas an
electron residing off axis will exhibit a large transverse os-
cillation. The betatron strength parameter, characterizing the
betatron radiation, is a�=�k�r�, where ��=2� /k� is the be-
tatron period and r� is the radial amplitude of the betatron
oscillation. One consequence is that an electron traveling
along the axis will not loose energy due to betatron emission,
whereas an off-axis electron with a large betatron amplitude
could loose significant energy. Hence, betatron emission in a
plasma focusing channel can result is an increase in electron
energy spread. However, although the relative energy spread
will increase for a finite radius electron beam injected on
axis, it still may be possible for the normalized emittance to
decrease as a result of betatron radiation.

The paper is organized as follows. The case where rela-
tivistic electrons are injected into a straight, focusing plasma
channel in the absence of longitudinal acceleration is ana-
lyzed in Sec. II. Using a separation of time scales, analytical
results are derived for both the single particle orbits and the
beam moments including radiation reaction. In Sec. III,
modifications due to the addition of a uniform longitudinal*Also at University of Nevada, Reno.
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accelerating field are considered. Section IV presents simu-
lation results for the case where the axial and transverse
fields are those obtained from linear plasma wakefield
theory. Several examples relevant to plasma accelerators are
given, including those in which the effects of radiation are
potentially detrimental if not properly controlled. Also in-
cluded are two appendices that describe some mathematical
details regarding the mean energy and energy spread, as well
as an analysis of mismatched beams, including a calculation
of the decoherence time and emittance growth.

II. CONSTANT FOCUSING CHANNEL

Consider, in �x ,z� slab geometry, an electron beam mov-
ing along the z axis in a constant, axially uniform focusing
channel. In this section, we will neglect the axial electric
field and assume the transverse field is that produced by a
quadratically varying potential

��x� = �0�1 − x2/xc
2� , �1�

where x is the transverse displacement from axis, xc is the
characteristic channel width, and �0 sets the strength of the
potential. In the focusing channel the electron momentum
evolves according to

dux

dct
= − K2x + Fx

RAD/mc2, �2�

duz

dct
= Fz

RAD/mc2, �3�

where FRAD is the radiation reaction force and u=p /mc is
the normalized electron momentum, with m the mass of the
electron and c the speed of light. It is convenient to param-
etrize the transverse focusing force in terms of the “spring-
constant” K2=2xc

−2�e�0 /mc2�, where −e is the electronic
charge. Note that in the blow-out regime, in which the focus-
ing force is determined by a bare, uniform ion column, K
=kp /�2 �cf. Ref. �6��, where �p=ckp= �4�n0e2 /m�1/2 is the
plasma frequency and n0 is the ambient plasma density.

The classical expression of the radiation reaction force is
�19�

FRAD

mc�R
=

d

dt
��

du

dt
� + �u	�d�

dt
�2

− �du

dt
�2
 , �4�

where �= �1+u2�1/2 is the relativistic Lorentz factor of the
electron and �R=2re /3c�6.26�10−24 s with re=e2 /mc2 is
the classical electron radius. Assuming the length scale asso-
ciated with this force c�R is much smaller than the scale
length of the betatron motion, we may treat the radiation
reaction force as a perturbation. Thus we evaluate the radia-
tion force using the unperturbed orbits �i.e., using Eqs. �2�
and �3� with FRAD=0�. This approximation yields

Fx
RAD � − mc3�RK2ux�1 + K2�x2� , �5�

Fz
RAD � − mc3�R�2K4x2, �6�

where we have made the additional assumption that uz	ux.
The equations of motion are then

u̇x � − cK2x − c2�RK2ux�1 + K2�x2� , �7�

u̇z � − c2�RK4�2x2, �8�

and ẋ=cux /�, where the dot notation denotes a time deriva-
tive. We expect this perturbation �radiation reaction force
much less than the Lorentz force� to be valid provided
c�RK /�0

1/2
1. Note that the semiclassical treatment of
the radiative effects requires the Compton wavelength
�C=h /mc to be much less than the radiation wavelength in
the electron rest frame, i.e., �C
2��rad. For a�

2 	1, this con-
dition becomes �C
�� / ��a��.

A. Single particle dynamics

1. Particle orbits without radiation

In the absence of the radiation reaction force, the
electron orbits are given by ẋ=cux /�, u̇x=−cK2x, and u̇z=0.
The following initial conditions are assumed: x�t=0�=x0,
ux�t=0�=ux0, ��t=0�=�0 �except when otherwise specified,
the zero subscript refers to the value at the initial time
through the rest of the paper�. As in Ref. �6�, the particle
orbits simply follow a harmonic oscillation in the transverse
direction at the betatron frequency ��=ck�=Kc /�0

1/2.
Furthermore, since ẋ�t=0�=cux0 /�0 and u̇x�t=0�=−cK2x0,
the electron orbits are

x = x0cos ��t +
ux0

k��0
sin ��t , �9�

ux = ux0cos ��t − x0k��0sin ��t . �10�

The transverse orbit Eq. �9� can also be written in the form
x=xmcos���t+��, with amplitude xm

2 =x0
2+ux0

2 / �k�
2�0

2� and
phase �=−arctan�ux0 / �x0k��0��.

2. Energy damping

An expression for the radiative damping rate can be de-
rived by assuming that ��uz in Eq. �8�, i.e.,

�̇ = − �Rc2K4x2�2. �11�

Since the effect of the radiation on the transverse oscillation
amplitude is treated as a perturbation, and since the time
scale for radiation damping is long compared to the betatron
period, Eq. �11� can be time averaged, i.e., �x2
t�xm

2 /2,
which gives

� =
�0

1 + ��t
, �12�

with the radiative damping rate

�� = �Rc2K4xm
2 �0/2. �13�

Alternatively, in terms of the betatron strength parameter �6�,
defined as a�=k��0xm, the damping length, defined as
Ld=c /��, is Ld= �c�R�0a�

2k�
2 /2�−1. This result is analogous to

the result for the case of radiation damping via Thomson
scattering, only with a� and k� replaced by the laser strength
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parameter and laser wave number, respectively �18�.
The differences in the definition of the strength param-

eters illustrates some of the fundamental differences that ex-
ist between laser-Thomson scattering and a plasma-focusing
channel. For Thomson scattering, cooling is effective when
the spot size of the laser is large compared to the radius of
the electron beam. In this case, the laser strength parameter
a0 �which is the normalized vector potential of the laser,
a0=eA0 /mc2 where A0 is the maximum amplitude of the vec-
tor potential� is approximately independent of radial posi-
tion. In contrast, for a focusing channel, the betatron strength
parameter is linearly proportional to the amplitude of the
transverse oscillation of the electron, which is a strong func-
tion of the initial radial position of the electron. For example,
an electron injected on the axis with no transverse momen-
tum will move straight along the channel axis, without any
oscillation and hence without any damping. On the other
hand, the damping will be much stronger for particles in-
jected farther from axis.

Alternatively, the radiative damping rate can be derived
by considering the power radiated by a moving charge,
which in the classical limit is �19�

Ps =
2e2

3c
�2	�du

dt
�2

− �d�

dt
�2
 . �14�

Using mc�̇=Fext ·u /�, where Fext is the external force on the
electron, gives

Ps =
2e2�2

3m2c3 ��Fext�2 − �Fext · u/��2� . �15�

When the force is transverse only, Fext=F�ex, and for a
relativistic electron with ux

2
�2, the radiated power can be
written

Ps �
2e2�2

3m2c3F�
2 . �16�

The characteristic damping time can be defined as the ratio
of the radiated power to the electron energy, ��= Ps /�mc2,
which yields the radiative damping rate �20,21�
��=�R�F�

2 /m2c2. Substituting the transverse force from the
plasma focusing channel, F�=−mc2K2x, and time averaging
over a betatron oscillation, yields Eq. �13�.

3. Particle orbits with radiation

Assuming ��uz, Eqs. �7� and �8� can be recast into a
coupled set of equations,

ẍ + �Rc2K2ẋ + K2c2x/� = 0, �17�

�̇ = − �Rc2K4x2�2. �18�

The position-independent damping term in Eq. �17�,
�Rc2K2ẋ, is small and can be neglected. It is convenient to
introduce the normalized variables X=x /xm, 
=� /�0,
�=��t, and �=�� /��, such that Eqs. �17� and �18� can be
rewritten

X� + 
−1X = 0, �19�

�
−1�� = 2�X2, �20�

where the prime notation designates the derivative with
respect to �.

To solve Eqs. �19� and �20�, we consider a separation of
time scales: The fast betatron oscillations of the order ��

−1

and the slow radiation damping of the order ��
−1, such that

�=�� /��
1. Consider a perturbation series in � such
that X�X�0�+�X�1� and 
�
�0�+�
�1�. The zeroth-order
equations are �X�0���+X�0� /
�0�=0 and �
�0���=0. With
the initial conditions discussed above, the solutions are
X�0�=cos��+�� and 
�0�=1.

The first-order �in �� equations are

�X�1��� + X�1� − 
�1�cos�� + �� = 0, �21�

�
�1��� = − 2 cos2�� + �� , �22�

with the solutions


�1� = − � +
1

2
�sin�2�� − sin�2� + 2��� , �23�

X�1� = XAcos�� + �� + XBsin�� + �� +
1

32
sin�3�� + ��� ,

�24�

where

XA = −
�

8
−

1

32
sin�4�� , �25�

XB =
1

32
cos�4�� +

�

4
sin�2�� −

�2

4
. �26�

Combining the zeroth and first-order solutions yields

X = X̂ cos�� + � − arctan �� , �27�

where X̂= ��1+�XA�2+�2XB
2�1/2, �=�XB / �1+�XA�, and the

third-harmonic term has been neglected. Note that the first-
order quantities will remain small, and the above solution
valid, provided that ��2= ���t����t�
1. Assuming ��2
1,
the above expressions can be expanded to yield

x � xm�1 − ��t/8�cos��1 + ��t/4���t + �� , �28�

�

�0
� 1 − ��t +

1

2

��

��

�sin�2�� − sin�2��t + 2��� . �29�

These equations also imply, to first order in �,

ux � − ��0xm��/c��1 − ��t/2�sin��1 + ��t/4���t + �� .

�30�

Time averaging Eq. �29� yields Eq. �12�, and, typically, the
fast oscillations in the energy evolution can be neglected.
The first-order expressions for x and � given by Eqs. �28�
and �29� are adequate for an accurate description of the be-
havior of a beam, e.g., evolution of the beam emittance and
energy spread, as shown below.
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B. Electron beam dynamics

In contrast to beam cooling and radiation damping using
Thomson scattering �18� or using a magnetic undulator �13�,
the energy damping of electrons in a plasma focusing chan-
nel depends strongly on the radial distribution of the elec-
trons. Specifically, the radiative damping rate is quadratic
with respect to the amplitude of the transverse betatron os-
cillation. Electrons initially injected close to the axis will
undergo only very small oscillations and lose almost no en-
ergy compared to those injected farther from the axis. This
will eventually lead to a significant increase of the energy
spread, at least for a radially symmetric beam centered about
the axis, which is examined in the following sections.

1. Mean energy

To describe the properties of an electron beam, the
appropriate single electron quantities are averaged over an
ensemble of beam electrons. For the case of the mean energy
of the beam, consider the expression for � of a single
electron given by Eq. �12�. Single electron quantities will be
expanded about the ensemble averaged value of that quantity
plus a small perturbation. For example, the initial energy
of a single electron is �0= ��0
+��0, where the angular
brackets denote an ensemble average over the beam, e.g.,
��0
=�i �0i /Np, where �0i is the initial energy of the ith
particle and Np is the number of particles in the beam.
Also, by definition, ��0
= ��
0, where ��
0= ��
�t=0� and
��
=�i �i /Np, as well as ���0

2
= ��0
2
− ��0
2���0

2 , since
���0
=0. Similar relations hold for other physical quantities,
some details of which are presented in Appendix A.

To the lowest order, assuming that the beam is centered
about and injected on axis, the mean energy is

��
 = ��
0�1 + �̄�t�−1, �31�

where the mean radiative damping rate is

�̄� = �Rc2K4��
0�xm
2 
/2, �32�

with �xm
2 
��x0

2 +c2�ux0
2 / ��̄�

2��
0
2� and �̄�=ck̄�=Kc / ��
0

1/2.
In terms of the mean betatron strength parameter

�a�
2
= k̄�

2��
0
2�xm

2 
, the mean radiative damping rate is

�̄� = �R��
2��
0�a�

2
/2. �33�

2. Energy spread

The relative energy spread is �� / ��
, where ��
2 = ���2


= ��2
− ��
2. To derive an expression for the energy spread,
the single electron expression for � is expanded to second
order in the energy perturbation �to ��2�, and to fourth order
for the position and momentum �to �x0

4 and �ux0
4 �.

The fourth-order development is necessary since the second-
order contribution vanishes. The cross-correlation terms
�e.g., ��x0��0
, etc.� are neglected. Note that for a beam
centered about and injected on axis, x0=�x0, ux0=�ux0, and
�x
0= �ux
0=0.

After some algebra �see Appendix A�, the normalized
energy spread is

��
2

��
2 �
��0

2

��
0
2 +

1

2
�R

2c4K8���
0
2�x0

4 +
�ux0

4

K4 �t2, �34�

where Gaussian distributions for the initial positions and mo-
menta are assumed, i.e., �x0

4
=3�x0
4 . Equation �34� indicates

that the energy spread will always increase if the beam is
initially centered on axis. This is due to the dependence of
the damping on the initial oscillation amplitudes of the elec-
trons �in contrast to the case of radiation via Thomson
scattering or from magnetic undulators�.

If the beam is initially matched in the channel, such that
in the absence of radiation there are no betatron oscillations

in the electron beam radial envelope, then �x0
2 =�nx0 / k̄���
0,

which implies that ��
0�x0
2 =�ux0

2 /K2 and �xm
2 
=2�x0

2 . In this
case the relative energy spread simplifies to

��
2/��
2 � ��0

2 /��
0
2 + �̄�m

2 t2, �35�

where �̄�m=�Rc2K4��
0�x0
2 . Note that for the plasma channel

in a blown-out regime, K2=kp
2 /2 and �̄�m=�Rc2kp

4��
0�x0
2 /4.

Also, for a beam with no initial energy spread ���0=0�,
�� / ��
� �̄�t. This result indicates that the relative energy
spread due to the radiation effects for a beam injected on axis
will be equal �or greater for a finite initial energy spread� to
the relative energy decrease. For example, if the radiation
leads to a 10% decrease of the mean beam energy, then the
relative energy spread will be at least �� / ��
�10%.

3. Transverse emittance

The beam radius and momentum follow from Eqs. �28�
and �30�,

�x
2 =

1

2
�xm

2 
 −
1

16
�Rc2K4��
0�xm

4 
t , �36�

�ux
2 = k̄�

2��
0
2	�xm

2 
 −
1

2
�Rc2K4��
0�xm

4 
t
 , �37�

where the kurtosis is �xm
4 
�3�x0

4 + �2/ k̄�
2��x0

2 �ux0
2 / ��
0

2

+ �3/ k̄�
4��ux0

4 / ��
0
4. Neglecting correlations between x

and ux, i.e., �nx��x�ux, it can be shown that the normalized
transverse emittance of the beam is

�nx �
k̄���
0

2
�xm

2 
�1 −
3

8
�Rc2K4��
0

�xm
4 


�xm
2 


t� . �38�

Note that if the beam is initially matched to the plasma

channel, then �x0
2 =�nx0 / ��
0k̄�, which also implies that

�x0=�ux0 / ��
0k̄�. This leads to �xm
2 
=2�x0

2 and �xm
4 
=8�x0

4 .
The expression for the normalized emittance of a matched
beam then simplifies to

�nx � �nx0�1 − 3�̄�mt/2� , �39�

where �nx0= k̄���0
�x0
2 and �̄�m=�Rc2K4��
0�x0

2 .

4. Example

Consider a beam of 1 GeV ���
0=2000�, with
��0 / ��
0=1%, injected into a blown-out plasma channel
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with a background electron density n0=5�1018 cm−3. Be-
cause the effect of radiation damping is much stronger for
larger beams, as an illustrative example, a very large initial
emittance �nx0�313 �m rad is chosen, for which the beam
matching condition imposes a relatively large beam radius of
4.86 �m. The mean energy, normalized energy spread, and
transverse normalized emittance are shown in Fig. 1, where
the analytical estimates from Eqs. �31�, �35�, and �39� are
plotted together with the results from a particle transport
code with a set of Np particles �Np=105 in this example�.
This code integrates the initial set of coupled equations of
motion, Eqs. �7� and �8�, using a fourth-order Runge-Kutta
algorithm. While the mean energy and emittance decrease by
only about 1.3% and 2%, respectively, the stronger effect is
the evolution of the relative energy spread, which increases
by more than 60%. The analytical estimates are in excellent
agreement with the numerical solutions.

III. FOCUSING CHANNEL WITH CONSTANT
ACCELERATION

In addition to the focusing forces discussed above, this
section includes the effects of a constant accelerating force.
The accelerating force is assumed to be of the same order as
the focusing force, as is typical in plasma-based accelerators.

The radiation reaction force is a perturbation in comparison
to the accelerating and focusing forces.

It can be shown that the expression of the radiation reac-
tion force remains the same when an accelerating gradient is
present. This is because the terms corresponding to the trans-
verse forces dominate the radiation reaction force �cf. Ref.
�19��, and whenever the particle is close enough to the chan-
nel axis for the focusing force to become too small, the ra-
diation will likewise be negligible.

A. Single particle dynamics

Including the accelerating force into the equations of mo-
tion for a single electron gives

ẋ = cux/� � cux/uz, �40�

u̇x = − cK2x − �RK2c2ux�1 + K2�x2� , �41�

u̇z = E − �Rc2K4�2x2, �42�

where E=Ez0e /mc and Ez0 is the accelerating gradient. In the
case of a linear wakefield, Ez0�kp�0, or E=�p�e�0 /mc2�.
The particle dynamics are described by the following
coupled equations,

ẍ + Eẋ/� + c2K2x/� = 0, �43�

�̇ = E − �Rc2K4�2x2, �44�

which, in terms of normalized quantities, can be written

X� + �X�/
 + X/
 = 0, �45�


� = � − 2�X2
2, �46�

where �=E / ��0���.

1. Particle orbits without radiation

As in Sec. II A 3, a time scale separation is assumed
�
1, allowing the perturbation series: X�X�0�+�X�1� and

�
�0�+�
�1�. The zeroth-order �without radiation� coupled
equations derived from Eqs. �45�–�46� are

�X�0��� + ��X�0���/
�0� + X�0�/
�0� = 0, �47�

�
�0��� = � . �48�

The solution for the energy evolution is 
�0�=1+��, or
��0�=�0+Et, i.e., the linear energy increases due to the con-
stant accelerating gradient.

Equation �47� for X�0� can be solved using the WKB
method, since the envelope variations are assumed slow
compared to the betatron oscillations; the solution is

X�0� = �
�0��−1/4cos � , �49�

with �=2�
�0��1/2 /�−2/�+�. Equation �49� can be written

x = xm�1 + Et/�0�−1/4cos � . �50�

2. Particle energy with radiative damping

The first-order equation for 
�1�, which includes the
effects of radiation, is

FIG. 1. �Color online� Mean energy, relative energy spread, and
normalized transverse emittance ��m rad� for a matched beam with
a large initial emittance of 313 �m rad, injected into a blown-out
plasma channel with density n0=5�1018 cm−3. The maximum
propagation distance �̄�tmax corresponds to a propagation of 2 cm.
Plotted are the analytical estimates from Eqs. �31�, �35�, and �39�,
and the numerical results from a particle transport code that inte-
grates the single particle equations of motion for a set of 105

particles.
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�
�1��� = − 2�X�0�
�0��2 = − 2�
�0��3/2cos2 � . �51�

As in the previous section, a time averaging over the fast
oscillations is performed, which yields �
�1����−�
�0��3/2,
with the solution


�1� �
2

5�
�1 − �
�0��5/2� . �52�

The time-averaged solution for 
 to first order is then
given by 
�
�0�+2��1− �
�0��5/2� /5�, or

� � �0 + Et +
2���0

2

5E 	1 − �1 +
E
�0

t�5/2
 . �53�

Note that, as the acceleration tends to zero, the first-order
result of Sec. II A is recovered, ���0�1−��t�.

Since the relatively complex source term for the first-
order equation for the transverse orbit X�1� did not readily
lead to a simple analytical solution, the behavior of X includ-
ing acceleration, focusing, and radiation is calculated nu-
merically using the particle transport code described above.
For this reason, the beam emittance will also be calculated
numerically.

B. Electron beam dynamics

Expressions for the beam mean energy and energy spread
can be derived analytically, as in the previous section, using
a decomposition of the variables into their centroid plus a
small deviation.

1. Beam energy

The expression for the mean energy of the beam follows
from an ensemble average of the single particle case; this
gives

��
 = ��
0 + Et +
2

5
�̄�

��
0
2

E 	1 − �1 +
E

��
0
t�5/2
 . �54�

Moment calculations provide the following expression
for the energy spread, to fourth order in x and ux �the
cross-correlated terms were again neglected�:

��
2

��
2 = ���
0 + Et�−2���0
2 +

2�R
2c4K8��
0

4

25E2

�	1 − �1 +
Et

��
0
�5/2
2���
0

2�x0
4 +

�ux0
4

K4 �� .

�55�

For a matched beam,

��
2

��
2 = ���
0 + Et�−2���0
2 +

4�̄�
2��
0

4

25E2 	1 − �1 +
E

��
0
t�5/2
2� .

�56�

And, for early times, Et / ��
0
1,

��
2

��
2 = ��
0�1 − 2Et/��
0����0
2 + ��
0

2�̄�
2t2� . �57�

Initially, the spread decreases linearly with time due to the
linear increase of the zeroth-order mean energy. For later
times, t2���0

2 / ���
0
2�̄�

2�, the energy spread can increase due
to the effects of radiation.

2. Laser wakefield accelerator example

Consider the case of an electron beam typical of that
produced by a 100 MeV-class laser wakefield accelerator
���
0=200, ��0 / ��
0=1%, �nx0�31 �m�, injected into a
blown-out plasma channel with a constant longitudinal accel-
eration. The plasma density is 5�1018 cm−3, the channel
width is 20 �m, and the accelerating gradient is 150 GV/m,
which would correspond to a typical laser wakefield with
a0�1 �where a0 is the normalized vector potential of the
laser�. The beam radius is initially matched to the plasma
channel, which corresponds to �x0=2.7 �m. These param-
eters are typical of present experiments that aim at achieving
an acceleration of multi-GeV electrons using a several cm
long plasma channel �such as a capillary discharge�. The re-
sults are shown in Fig. 2. The total propagation length cor-
responds to 2 cm. Over the first millimeters of propagation,
the energy spread decreases as �1/ t due to the dominant
linear increase of the mean energy. However, after about
1 cm �or �̄�t�200�, the spread starts to increase due to the
radiation effects. The analytical estimates from Eqs. �54� and

FIG. 2. �Color online� Mean energy, relative energy spread,
and normalized transverse emittance ��m rad� for a 100 MeV
beam injected into a 2 cm long, blown-out plasma channel
�n0=5�1018 cm−3� with a constant acceleration Ez0=150 GV/m.
The solid blue curves represent the numerical calculations from the
particle transport code, while the dashed red curves �for ��
 and
�� / ��
� are the analytical estimates Eqs. �54� and �55�.
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�55� are plotted in Fig. 2, as well as the result from the
particle transport code �numerical solution to the single par-
ticle equations of motion Eqs. �41� and �42� for 105 par-
ticles�. Analytical estimates for the mean energy and relative
energy spread are in excellent agreement with the numerical
results.

It should also be noted that with these parameters �and
in particular this plasma density�, uniform acceleration of
the electrons could not be maintained for such long distances
in a single acceleration stage due to the dephasing effect.
It is well-known that in plasma accelerators, the electrons
can outrun the phase velocity of the wake, which is roughly
equal to the velocity of the drive beam �e.g., the group
velocity of the laser� in the plasma and hence smaller than
c. The dephasing length is given approximately by
Ldeph��p�0

2 /2�p
2, where �p is the plasma wavelength, �0 the

laser frequency, and �p the plasma frequency. One solution
to dephasing is to use multiple stages in which the plasma
channels are separated by a drift section and are placed such
as to reposition the electrons in the proper phase in the wake-
field. Alternatively, the dephasing length in a single stage
using an axially uniform plasma density can be increased by
reducing the plasma density. For the above parameters,
Ldeph�2.5 mm, so the negative effects of the radiation on the
energy spread should not have the time to occur before the
dephasing length is reached in a single stage.

3. Plasma wakefield accelerator example

The effects of radiation can be more important in plasma
wakefield accelerators that are driven by highly relativistic
electron beams. In this case, the acceleration distance is typi-
cally not limited by dephasing, but rather by some other
constraint, such as the length of the plasma or the propaga-
tion distance of the electron beam. One effect that can limit
the propagation distance of the drive beam is depletion of the
drive beam energy. Since the decelerating field inside the
bunch is typically on the order of the accelerating field be-
hind the bunch, this can be roughly estimated by dividing the
energy of the drive beam by the accelerating field of the
wake. For example, if a 30 GeV electron beam is used to
drive a wake of amplitude 10 GV/m, then the driven beam
propagation can be expected to be altered after a depletion
distance on the order of 3 m.

As an illustrative example in which the effects of
radiation are significant, consider a 30 GeV beam propagat-
ing in a blown-out plasma channel with a density of
3�1017 cm−3 �5�, a constant acceleration gradient of
37 GV/m, and a beam with an initial radius �x0=10 �m.
The results are shown in Fig. 3. The maximum propagation
length on these figures, with the chosen normalization, cor-
responds to 30 cm. In addition to the sudden growth of the
emittance due to the mismatched beam �the detailed analyti-
cal treatment of the mismatched beam case is presented in
the Appendix B�, the energy spread strongly increases due to
the radiation. For a variety of small initial energy spreads �in
this particular example we chose ��0=10−3��
0�, after 30 cm
the energy spread is close to 10%. Note also that because the
radiation effect is not sufficiently small for this example �i.e.,

��2�1�, the first-order analytical model starts to fail describ-
ing the energy spread at longer times.

Next, consider a similar case but with a lower plasma
density. All the parameters remain the same except for
n0=1016 cm−3, e.g., the propagation length is still 30 cm.
However, the 30 cm of propagation now correspond to much
fewer betatron oscillations �about 15, compared to almost
100 in the previous case with n0=3�1017 cm−3�, hence the
effect of radiation is much smaller. In particular, the energy
spread does not increase, but on the contrary, exhibits a de-
crease due to the acceleration as shown in Fig. 4. Further-
more, although the matching condition is not quite fulfilled
yet, the emittance does not have the time to grow to large
values.

These examples indicate that the effects of the radiation
could be significant for the beam quality in plasma wakefield
acceleration experiments. In addition to radiation lowering
the energy gain �as discussed in Ref. �12��, radiation could
strongly affect the energy spread due to the quadratic depen-
dence of the radiation damping on the betatron oscillation
amplitude. This effect could be controlled, however, by an
appropriate choice of beam and plasma parameters, such that
the amplitude and number of betatron oscillations remain
small.

FIG. 3. �Color online� Mean energy, relative energy spread,
and normalized transverse emittance ��m rad� for a 30 GeV beam
injected into a 30 cm long blown-out plasma channel with a
constant acceleration gradient of 37 GV/m and a density
n0=3�1017 cm−3. The solid blue curves represent the numerical
calculations from the particle transport code, while the dashed red
curves �for ��
 and �� / ��
� are the analytical estimates Eqs. �54�
and �55�.
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IV. BEAM DYNAMICS IN A PLASMA WAKEFIELD

If the fields that apply onto the particles are known ana-
lytically, then we can derive a set of coupled equations de-
scribing the motion of the single particles, such as Eqs. �7�
and �8�, that can be solved numerically for a variety of ana-
lytically specified focusing and accelerating fields. As dis-
cussed previously, the equations of motion for a set of test
particles were solved numerically using a particle transport
code based on a fourth-order Runge-Kutta algorithm. Here,
electron beam evolution including the effects of radiation is
examined for the case in which the focusing and accelerating
fields are described by linear plasma wakefield theory.

For a drive laser pulse with a Gaussian radial intensity
profile, linear theory predicts that the resulting plasma wake-
field is described by an electrostatic potential of the form

� = �0exp�− x2/xc
2�cos kp�z − vpt� , �58�

where � is the electrostatic potential normalized to e /mc2

and vp�vg=c�1−�p
2 /�0

2�1/2 is the phase velocity of the
wake, which is approximately equal to the group velocity vg
of the laser pulse �with frequency �0� propagating in the
plasma. With this form for the wakefield, the Lorentz equa-
tion, neglecting the radiation reaction force, is du /dct=��.

By treating the radiation reaction force as a perturbation,
the electron motion can be described by the following
coupled equations: ẋ=cux /�, ż=cuz /�,

u̇x =
− 2c�0

xc
2 x exp�−

x2

xc
2�cos�kp�z − vpt�� −

4�Rc2�0
2

xc
4 �ux

�exp�−
x2

xc
2�cos2�kp�z − vpt�� , �59�

and

u̇z = − ckp�0�1 −
x2

xc
2�exp�−

x2

xc
2�sin�kp�z − vpt��

−
4�Rc2�0

2

xc
4 �2x2exp�−

x2

xc
2�cos2�kp�z − vpt�� . �60�

The unperturbed expressions for the focusing and accelerat-
ing forces show that there is a phase region of length �p /4
where the electrons will undergo both focusing and accelera-
tion. This limits the actual dephasing length �for both accel-
eration and focusing� to half the one-dimensional value, i.e.,
Ldeph��p

2�p /2, where �p= �1−vp
2 /c2�−1/2=�0 /�p is the rela-

tivistic Lorentz factor associated with phase velocity of the
wakefield.

As an example, consider parameters that are typical of
experiments on the next generation of a GeV-class laser
wakefield accelerators. The plasma has a relatively low den-
sity �n0=3�1017 cm−3� and is sufficiently long �20 cm� to
provide a strong acceleration of the injected beam before the
dephasing length is reached �i.e., when the electron overtakes
the wake and begins to decelerate�. The laser wavelength is

FIG. 5. �Color online� Mean energy, relative energy spread, and
normalized transverse emittance �in m rad� for a 100 MeV beam
injected into a 20 cm long plasma wakefield accelerator with a den-
sity n0=3�1017 cm−3.

FIG. 4. �Color online� Mean energy, relative energy spread, and
normalized transverse emittance ��m rad� for a 30 GeV beam in-
jected into a 30 cm long blown-out plasma channel with a constant
acceleration gradient of 37 GV/m and a density n0=1016 cm−3. The
solid blue curves represent the numerical calculations from the par-
ticle transport code, while the dashed red curves �for ��
 and
�� / ��
� are the analytical estimates Eqs. �54� and �55�.
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�0=0.8 �m �Ti:Sapphire laser system�, with a spot size of
20 �m �rms� and a normalized electric field of a0=1, where
a0�0.85�10−9�0��m��I�W/cm2��1/2 with I the laser inten-
sity. The electron beam injected into the wakefield has an
initial normalized transverse emittance of �nx0�3 �m, an
initial energy of nearly 100 MeV ���0
=200�, an rms energy
spread of 1%, and is focused to the initially matched radius
of 1.75 �m. The initial electron bunch length is
�z0=0.1 �m. These are typical parameters for a plasma gen-
erated in a capillary discharge, which would provide a guid-
ing of the laser pulse, even at high intensities, to compensate
for the natural diffraction length of the laser.

The numerical results from the transport code �with 105

particles� are shown in Fig. 5. The plasma length has been
chosen slightly longer than the dephasing length to illustrate
the dephasing effect. The effective dephasing length here is
Ldeph=�p

2�p /2�17.7 cm, which is close to the propagation
length from injection to the maximum energy in this example
�the bunch is injected close to the defocusing region, with a
bunch length sufficiently short such that all the electrons are
accelerated and focused�. The electron beam reaches a maxi-
mum energy of about 3.4 GeV after about 15 cm of propa-
gation. The energy spread decreases to its minimum just be-
fore the maximum energy is reached. This is due to the
rotation of the electron bunch in phase space as it is accel-
erated along trapped orbits. With these parameters, the dif-
ference in energy spread for the cases with and without ra-
diation reaction is only of the order 10−4 �cf. Fig. 6�, which is
negligible. This shows that even for rather optimistic laser
wakefield accelerator parameters, the dephasing should occur
before the radiation effects become significant. To reach high
energies in a single stage with an axial uniform plasma re-
quires the use of low plasma densities �in order to avoid
dephasing�. Lower plasma densities imply less betatron os-
cillations and consequently a smaller radiation effect.

V. DISCUSSION AND CONCLUSIONS

The effects of radiation reaction on the electron beam
evolution in plasma-based accelerators has been examined

analytically and with the use of test particle simulations. In
this study, the radiation is a result of the betatron motion of
the beam electrons due to the focusing fields of the plasma,
and the effects of the radiation on the beam were modeled
using the classical radiation reaction force. A variety of cases
were examined, including beam evolution in a plasma focus-
ing channel with and without a constant accelerating field, as
well as the case of focusing and accelerating fields as de-
scribed by linear wakefield theory. In general, radiation de-
creases the energy gain, the emittance �if the beam is initially
matched in the channel� and, more importantly, increases the
relative energy spread of the beam. It should also be noted
that the analytical formalism presented here is general and
can be applied to any straight system with linear focusing
forces.

The effects of radiation on the electron beam are deter-
mined by the characteristic time scale �̄�

−1, where �̄� is the
mean radiative damping rate given by Eq. �32�. For example,
in a plasma focusing channel in the absence of acceleration,
the mean energy of the beam decreases as �1+ �̄�t�−1, as in
Eq. �31�, whereas for a matched beam, the energy spread of
the beam increases asymptotically as �̄�t, as in Eq. �35�,
and the beam emittance decreases linearly with �̄�t, as in Eq.
�39�. In terms of the mean betatron wavelength,

�̄�=2���
0
1/2 /K, the mean radiative damping factor for a

matched beam is

�̄�t = �16�3/3�re��
0
2�nx0z/�̄�

3 , �61�

where re is the classical electron radius. In practical units,

FIG. 7. �Color online� Mean energy, relative energy spread, and
normalized transverse emittance ��m rad� for a large mismatched
beam injected on axis into a blown-out plasma channel. The dashed
red curves are the analytical estimates Eqs. �A2�, �A4�, and �B12�.
The solid blue curves are the numerical results from the particle
transport code �using 105 particles�.

FIG. 6. �Color online� Difference between the relative energy
spread with and without radiation reaction, for the parameters of
Fig. 5.
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�̄�t = 4.7 � 10−7��
0
2��nx0��m����̄���m��−2�z/�̄�� . �62�

Note that in the blowout regime �̄�= �2��
0�1/2�p.
As an example, consider parameters relevant to

experiments on the plasma wakefield accelerator
in the blowout regime using a 28.5 GeV electron
beam �5�: ��
0=5.6�104, n0=2.8�1017 cm−3, �p=62 �m,

�̄�=2.1 cm, and �x0=10 �m. Note that the matched emit-
tance for the �x0=10 �m beam in the blowout channel is

�nx0=2���
0�x0
2 / �̄�=1.7 mm, which is relatively large. As-

suming z=10�̄�, these parameters give �̄�t=5.7�10−2. This
implies, for example, that the normalized energy spread
would grow to at least 5.7%, even if the beam had initially
zero energy spread. The reason for this relatively large value
of �̄�t is that the matched emittance is large due to an as-
sumed matched beam radius of �x0=10 �m.

Highly relativistic electron beams of this class can have
a much lower emittance, e.g., �nx0=10 �m, than assumed
in the above example. However, matching such a beam into
a channel with such strong focusing would require a very
small beam radius, e.g., �x0=0.78 �m. This would result in a
much smaller value of �̄�t=3.3�10−4. Injecting such a radi-
ally small beam is problematic and would require very strong
focusing prior to injection into the plasma channel. Note that
if a beam of �nx0=10 �m is injected at 28.5 GeV into a

channel with �̄�=2.1 cm at a more typical radius of �x0
=10 �m, it would be highly mismatched and the beam emit-
tance would grow towards the matched value. Once the emit-
tance has reached its matched value, the beam parameters
would evolve according to the equations describing the
matched beam evolution. The time scale for the emittance to
grow to its matched value is determined by the decoherence
time, tdc, as discussed in Appendix B. For early times, t

 tdc, the emittance blow-up due to phase mixing will be
small, and the changes to the energy spread can be small. For
a sufficiently large initial energy spread satisfying ��0 / ��
0

	 ���̄� /���1/2, the decoherence time is tdc����0
 / �����0�.
For a sufficiently small initial energy spread satisfying
��0 / ��
0
 ���̄� /���1/2, the decoherence time is tdc

��2� /���̄��1/2.
The situation is somewhat different for laser wakefield

accelerators. Typically, the accelerated bunch in a laser
wakefield accelerator is produced from self-trapping and
evolves in such a manner that it is approximately self-

matched at a small radius in the focusing fields of the wake.
As noted above, the relevant scale for the acceleration length
is the dephasing length, Ldeph=�p

3 /2�0
2. In terms of the accel-

eration distance normalized to Ldeph, the quantity �̄�t can be
written

�̄�t = �23/2�3/3�re��
0
1/2�nx0�0

−2�z/Ldeph� , �63�

or in practical units,

�̄�t = 8.2 � 10−8��
0
1/2��nx0��m����0��m��−2�z/Ldeph� . �64�

As an example, consider a 2 GeV ���
0=4�103� laser
wakefield accelerator in the blowout regime with a density

n0=5�1017 cm−3, �p=47 �m, �̄�=0.42 cm, �0=0.8 �m,
�nx0=10 �m, and a matched bunch radius of �x0=1.3 �m.
After a single stage �z=Ldeph�, �̄�t=8.1�10−5. Again, here
the effects of radiation on the electron bunch are small, due
to the small transverse size of the bunch.

The above expressions rigorously describe the effects of
radiation on electron beams that are initially matched in the
focusing channel, neglecting the effects of acceleration, as
presented in Sec. II. These results have been generalized
to include the effects of a constant accelerating field �Sec.
III�, and test particle simulations have been presented to
study the case in which the focusing and accelerating fields
represent those derived from linear plasma wakefield theory
�Sec. IV�. The case of mismatched beams has been described
in Appendix B and studied with test particle simulations.

FIG. 8. �Color online� Transverse phase space �x , ux� at �̄�t
=0, �̄�t=45, and �̄�t=89, for a large mismatched beam injected on
axis into a blown-out plasma channel.

FIG. 9. �Color online� Mean energy, relative energy spread, and
normalized transverse emittance ��m rad� for a narrow, mis-
matched beam injected off axis into a blown-out plasma channel.
The dashed red curves are the analytical estimates from Eqs. �A2�,
�B13�, and �B12�, and the solid blue curves are the numerical re-
sults from the particle transport code �using 105 particles�.
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Generally, injecting a beam with a spot size larger than
the matched radius into a plasma channel, may lead to large
betatron oscillations, and to a quick growth of the emittance
towards its matched value. The resulting radiation can then
significantly affect the beam, inducing a relative energy
spread that can be on the several percent level. This can have
detrimental effects on applications such as for high-energy
physics and free electron lasers operating in the x-ray re-
gime, which require high quality electron beams with energy
spreads on the order of a fraction of a percent.

On the other hand, provided that the beam is initially
matched in the channel at typical values of a normalized
emittance ��nx0�10 �m or less�, the effects of radiation on
the beam are not important. This is because a matched beam
at typical values of �nx0�10 �m has a very small radius, and
consequently the betatron oscillation, as well as the resulting
radiation, is small. As noted above, this can be challenging,
due to the relatively large focusing fields required to focus
the beam into such plasma channels. The matched beam ra-

dius is �x0
2 =�nx0�̄� /2���
0��nx0���
0n0�−1/2. For example, a

2 GeV electron beam with �nx0=10 �m in a blowout plasma
with n0=1018 cm−3 has a matched radius of �x0�1 �m. In-
jecting such a small beam into the channel will require very
strong focusing prior to the channel, perhaps requiring the
use of a novel mechanism such as a plasma lens.
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APPENDIX A: GENERAL EXPRESSION FOR THE MEAN
ENERGY AND ENERGY SPREAD

In this appendix, a general expression is derived for the
relative energy spread, valid for a matched or mismatched
beam, injected on axis ��x0
=0� or off axis ��x0
�0�. The
assumptions made are �i� �ux
0=0 �i.e., the beam is injected
straight into the channel�, �ii� the distributions contain only
even moments �e.g., ��x0

3
=0�, and �iii� there are no initial
correlations in the beam distribution.

The single particle energy Eq. �12� with the radiative
damping rate �� Eq. �13� is

� = �0	1 +
1

2
�Rc2K4��0x0

2 +
ux0

2

K2 �
−1

. �A1�

Quantities are written in terms of the centroid and a devia-
tion, i.e., �0= ��
0+��0, x0= �x
0+�x0, and ux0=�ux0. A se-
ries is developed for the different moment orders and con-
sideration is given to the possible off-axis initial condition
�x
0=0. Owing to vanishing second-order moments, the
lowest-order radiative correction to the energy spread re-
quires development to fourth order �e.g., �x0

4 �.
The expression for the mean energy, neglecting the third-

order and higher terms is

��
 =
��
0

B
	1 −

At

B
� �x
0

2

��
0
��0

2 − ��
0�x0
2 −

�ux0
2

K2 �
 , �A2�

where A=�Rc2K4 /2 and B=1+A��
0�x
0
2t. This expression

includes the second-order moments, including a possible off-
axis initial condition. The fourth-order expression for the
standard deviation ��

2 = ��2
− ��
2 is

��
2 =

��0
2

B4 −
A

B3��0
2 �4��
0�x0

2 +
2

K2�ux0
2 � +

A2

B4	2t2�x
0
2���0

4

+ 2��
0
4�x0

2 � + t2��0
4
���x0

4
 − �x0
4 � −

1

K4���
0
2�ux0

4

+ 4��
0
3�x0

2 �ux0
2 �
 . �A3�

Note that, when �x
0=0, the second-order moment contribu-
tions vanish. If the distribution for x0 is Gaussian, then
��x0

4
=3�x0
4 . The relative energy spread is

��
2

��
2 �
��0

2 + �R
2c4K8��
0

4�x
0
2�x0

2 t2 + 1
2�R

2c4K8��
0
4�x0

4 t2 + 1
2�R

2c4K4��
0
2�ux0

4 t2

��
0
2�1 + 1

2�Rc2K4��
0�x
0
2t�2 . �A4�

APPENDIX B: MISMATCHED BEAMS

Consider a beam that is not initially matched in the
plasma channel. If the beam is initially mismatched and has
a finite energy spread, then different particles among the

beam will undergo betatron oscillations at different frequen-
cies, ����−1/2. This will lead to a slippage of the particles
with respect to each other, and to emittance growth, until the
emittance reaches the matched value. In this appendix, the

FIG. 10. �Color online� Transverse phase space �x , ux� at �̄�t
=0, �̄�t=33, and �̄�t=66, for a narrow beam injected off axis into
a blown-out plasma channel.
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beam decoherence time �i.e., the time at which the slippage
between the particles becomes significant� is calculated, as
well as the emittance evolution, for a mismatched beam.
Also analyzed is the energy spread for narrow beam injected
off axis, including a description of the conditions necessary
for reduction in the energy spread. Note that in the following,
the decoherence time is assumed to be much smaller that the
radiation damping time.

1. Beam decoherence

An approximate method for estimating the decoherence
time consists of considering two particles in the beam with
energies at the two ends of the distribution: �1= ��
+�� and
�2= ��
−��. The phase associated with the betatron oscilla-
tions of these two particles is

�1,2 =� dt��1,2, �B1�

where ��1,2=Kc /�1,2
1/2. The phase terms can be expanded us-

ing �1,2= ��
±�� with ��
2 / ��
2
1, which yields

�� � ��� dt��/��
 , �B2�

where ��=�1−�2.
Consider the case in which the initial energy spread is

greater than that induced by radiation, i.e., ��0
2 / ��
0

2	�̄�
2t2.

In this case �� / ��
���0 / ��
0 and �����t��0 / ��
0. The
decoherence time tdc can be defined as the time when the
phase difference between the low energy part of the beam
and the high energy part is �, i.e., ���t= tdc�=�. This gives

tdc �
���
0

����0
. �B3�

Note that the initial energy spread will determine the
coherence time provided ��0

2 / ��
0
2	�̄�

2tdc
2 , which gives

��0
2 / ��
0

2	��̄� /��.
Consider the opposite limit, in which the initial

energy spread is smaller than that induced by radiation,
i.e., ��0

2 / ��
0
2
�̄�

2t2. In this case �� / ��
� �̄�t and
������̄�t2 /2. The decoherence time is then

tdc � � 2�

���̄�
�1/2

. �B4�

Radiation induced energy spread will determine the
decoherence time provided ��0

2 / ��
0
2
2��̄� /��.

2. Emittance growth

The decoherence of the beam eventually leads to a growth
of the emittance, which grows until saturation at the matched
value. The evolution of the emittance can be examined by
considering the electron orbits in the absence of radiation
effects, i.e., the case in which decoherence is dominated by
the initial energy spread, as discussed above. Consider the
electron orbits

x = xmcos � , �B5�

ux = uxmsin � , �B6�

with �=��t, uxm=−�0��xm /c, and uxm
2 =K2�0x0

2+ux0
2 .

Since the emittance growth effect considered here is
purely due to phase mixing, the oscillation amplitudes are
assumed to be the centroid values �or standard deviations in
the case where the centroid is zero�, i.e., �x2
��x0

2
�cos2 �
,
etc. This gives

��x2
 =
�xm

2 

2

�1 + �cos 2�
� − �xm
2�cos �
2, �B7�

��ux
2
 =

�uxm
2 

2

�1 − �cos 2�
� − �uxm
2�sin �
2, �B8�

��x�ux
2 =
�xmuxm
2

4
�sin 2�
2

− �xmuxm
�xm
�uxm
�sin 2�


��cos �
�sin �


+ �xm
2�uxm
2�cos �
2�sin �
2.

�B9�

Assuming �0���0
 in the amplitude terms leads to
simplifications in these expressions, i.e., �xmuxm
2= �xm

2 

��uxm

2 
, �uxm
2 
=K2��0
�xm

2 
, and �uxm
2=K2��0
�xm
2.
The sinusoidal terms in the above equations can be ap-

proximated by assuming that the energy distribution about
the mean energy is initially Gaussian and remains so during
the beam propagation. The width �� and mean energy �
are allowed to vary, but the ��=�− ��
 distribution is
assumed to not deviate too far from a Gaussian. To proceed,
the energy is expanded about its mean value to first order
in �� / ��
, i.e., �= ��
+��, ��� �̄��1−�� /2��
�
�where ��=Kc /�1/2 and �̄�=Kc / ��
0

1/2�, and �� �̄�t�1
−�� /2��
�. The ensemble averaged quantities can then be
expressed as averages over the distribution of energy
deviations, e.g.,

�cos �
 �
1

��
�2�

�
−�

�

d�� exp�− ��2/2��
2�cos��0 + ���

= exp�− ��
2t2�cos �0, �B10�

where �0= �̄�t and ��=−�0�� /2��
, and

�� =
�̄���

�8��

. �B11�

Similar expressions involving averages over the fast oscilla-
tions can be derived: �sin �
=exp�−��

2t2�sin �0, �sin 2�

=exp�−4��

2t2�sin 2�0, and �cos 2�
=exp�−4��
2t2�cos 2�0.

Note that the exponent recovers the approximate expression
of the decoherence time given above in the limit that deco-
herence is dominated by the initial energy spread:
���1/ tdc.
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The transverse normalized emittance can be calculated us-
ing the definition �nx

2 = ��x2
��ux
2
− ��x�ux
2, which gives

�nx
2 =

K2��
0

4
�1 −

3

4
�Rc2K4��
0

�xm
4 


�xm
2 


t���xm
2 
2�1 − e−8��

2t2�

− 2�xm
2 
�x
m

2 �e−2��
2t2 − e−6��

2t2�� . �B12�

The factor �1− �3/4��Rc2K4��
0�xm
4 
t / �xm

2 
� in Eq. �B12� ac-
counts for the effects of radiation damping, which was as-
sumed to occur on a time scale long compared to that of
decoherence. Note that for long times, ��

2t2	1, this reduces
to the previous expression Eq. �38�.

3. Narrow beam injected off axis

Consider the case of a narrow beam injected off axis. This
case can be analyzed using the expression for the energy
spread derived in Appendix A with �x
0�0. Neglecting the
fourth-order terms gives

��

��

�

���0
2 + 4�̄�on�̄�off��
0

2t2�1/2

��0
�1 + �̄�offt�
, �B13�

where �̄�off=�Rc2K4��
0�x
0
2 /2 �energy damping rate for a

beam injected off axis� and �̄�on=�Rc2K4��
0�x0
2 /2 �energy

damping rate for a beam injected on axis�.
For this case, the energy spread is no longer uncondition-

ally increasing. In particular, the time derivative of the rela-
tive energy spread is

d

dt

��

��

=

�̄�off

��0
�1 + �̄�offt�2

4�̄�on��0
2t − ��0
2

���0
2 + 4�̄�off�̄�on��0
2t2�1/2 .

�B14�

The relative energy spread will first decrease, but will then
increase after a time tcrit given by

tcrit =
��0

2

4�̄�on��0
2 . �B15�

Likewise, the relative energy spread is at its minimum when
t= tcrit.

By examining the relative energy spread at its minimum
value �t= tcrit�, a range can be defined for which the decrease
in the energy spread is significant. This range is defined by
the inequalities ��0

2 �4�̄�on�̄�off��0
2tcrit
2 and 1��̄�offtcrit.

These inequalities imply

2�x0

�x0

�

��0

��0

�

2�x0

�x0

. �B16�

This can be satisfied when �x0
 �x0
, i.e., a significant de-
crease in energy spread is possible for a very narrow beam

with a sufficient energy spread injected sufficiently far from
the channel axis.

4. Examples

First, consider the case of a mismatched beam injected on
axis. A blown-out plasma channel is assumed with a back-
ground plasma density of n0=5�1018 cm−3 and a channel
width xc=30 �m, along with an injected beam of energy
1 GeV ���
0=2000, ��0 / ��
0=1%� with a radius
�x0=10 �m and an initial emittance of 3.1 �m. Shown in
Fig. 7 are the analytical estimates �dashed red curves� Eqs.
�A2�, �A4�, and �B12�, and the numerical results �solid blue
curves� from the particle transport code �using 105 particles�.
After 2 cm of propagation, the mean energy decreases by
less than 3%. However, the effect of the radiation on the
energy spread is quite dramatic, with an increase by a factor
of four. The emittance quickly grows at the beginning, until
it reaches the matched value and starts to slowly decrease
due to radiative effects. The analytical estimates are in rea-
sonably good agreement with the results of the particle trans-
port code, although the strong radiation leads to an error
between the analytical and numerical curves �at longer times,
the perturbation theory begins to break down�. Note that, in
this particular case, the growth of the cross correlation be-
tween the particles’ energies and their transverse position and
momentum can also contribute to the mismatch. Indeed, after
some propagation the particles near the axis in �x ,ux� phase
space will not radiate significant energy, while those the far-
ther from the axis will radiate a significant amount of energy.
The mean energy loss is approximately four times larger than
the initial energy spread, and, hence, the correlated energy
spread will grow larger than the initial, uncorrelated energy
spread.

Figure 8 shows the phase space �x ,ux� for three different
times as obtained from the particle transport code for the
same parameters as Fig. 7. The physical process �phase mix-
ing� leading to the emittance growth is clearly illustrated.

Next, consider the case of off-axis injection of a
very narrow beam with a rather large energy spread:
�x
0=10 �m, �x0=0.1 �m, and ��0 / ��
0=5% �such that
��0 / ��
0��x0 / �x
0�. The other parameters remain the same
as in the previous example. The numerical results from the
particle transport code �with 105 particles� are shown in Fig.
9. As predicted by Eqs. �B13� and �B12�, the energy spread
decreases; however, the emittance exhibits extreme growth,
by a factor �200, due to phase mixing. The growth in trans-
verse emittance due to phase mixing for this example is
shown in Fig. 10.
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